
Is Structural Subtyping Useful?
An Empirical Study

Donna Malayeri Jonathan Aldrich

December 2009
CMU-CS-09-100

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Structural subtyping is popular in research languages, but all mainstream object-oriented languages use
nominal subtyping. Since languages with structural subtyping are not in widespread use, the empiri-
cal questions of whether and how structural subtyping is useful have thus far remained unanswered.
This study aims to provide answers to these questions. We identified several criteria that are indicators
that nominally typed programs could benefit from structural subtyping, and performed automated and
manual analyses of open-source Java programs based on these criteria. Our results suggest that these
programs could indeed be improved with the addition of structural subtyping. We hope this study will
provide guidance for language designers who are considering use of this subtyping discipline.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
DEC 2009 2. REPORT TYPE

3. DATES COVERED
 00-00-2009 to 00-00-2009

4. TITLE AND SUBTITLE
Is Structural Subtyping Useful? An Empirical Study

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University ,School of Computer
Science,Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

22

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Keywords: Multiple inheritance, multiple dispatch, diamond inheritance

1 Introduction

Structural subtyping is popular in the research community and is used in languages such as O’Caml
[15], PolyToil [6], Moby [11], Strongtalk [5], and a number of type systems and calculi (e.g., [7, 1]). In
the research community, many believe that structural subtyping is beneficial and is superior to nomi-
nal subtyping. But, structural subtyping is not used in any mainstream object-oriented programming
language—perhaps due to lack of evidence of its utility. Accordingly, we ask: what empirical evidence
could show that structural subtyping can be beneficial?

Let us consider the characteristics that a nominally-typed program might exhibit that would indicate
that it could benefit from structural subtyping. First, the program might systematically make use of a
subset of methods of a type, with no nominal type corresponding to this method set. A particular such
implicit type might be used repeatedly throughout the program. Structural subtyping would allow these
types to be easily expressed, without requiring that the type hierarchy of the program change. This is
particularly beneficial when a nominal hierarchy cannot be changed (due to lack of access to or control of
the applicable source code), as changing a nominal hierarchy generally requires changes to the intended
subtypes. For example, in Java, to express the fact that class C implements interface I , C ’s source must
be modified.

Second, there might be methods in two different classes that share the same name and perform the
same operation, but that are not contained in a common nominal supertype. There are a number of
reasons why such a situation might occur, such as oversight on the part of the original designers. This
is particularly likely when the original code did not need to make use of the implicit interface induced
by these common methods. Alternatively, perhaps such a need did exist, but programmers resorted to
code duplication rather than refactoring the type hierarchy—possibly because the source code was not
accessible or could not be changed. On the other hand, with structural subtyping, the two classes in
question would automatically share a common supertype consisting of the shared methods.

Or, programs might use the Java reflection method Class.getMethod() to call a method with a partic-
ular signature in a generic manner. For instance, we may wish to write a method m that can be passed
as an argument any object that contains a “String getName()” method. In nominally typed languages,
this can generally be achieved only through dynamic means such as reflection; in contrast, structural
subtyping provides such a capability in a statically-checkable manner.

Finally, suppose a programmer is faced with the challenge of writing a class C that only supports
a subset of its declared interface I . But, such a super-interface does not exist and cannot be defined,
perhaps due to library use. One possible implementation strategy is simply throw an exception (e.g.,
UnsupportedOperationException) when one of C ’s unimplemented methods is called. In contrast, with
structural subtyping, the intended structural super-interface could simply be used.

With all of these characteristics in mind, we performed several manual and automated analyses on
(up to) 29 open-source Java programs. In the case of manual analyses, a subset of the subject programs
was considered. Each of these analyses aimed to answer one question: are nominally-typed programs
using implicit structural types? The result was that indeed they were; representing these types explicitly
could therefore produce desirable characteristics, such as increased code reuse and decreased mainte-
nance effort.

In the empirical evaluation, answers to the following questions were sought:

1. Does the body of a method use only a subset of the methods of its parameters? If so, structural
types could ease the task of making the method more general. (Sect. 3)

2. If structural types are inferred for method parameters, do there exist inferred types that are used

1

repeatedly, suggesting that they represent a meaningful abstraction? (Sect. 3.3)

3. How many methods always throw “unsupported operation” exceptions? In such cases, the enclos-
ing classes support a structural supertype of the declared class type; the latter contains all of the
declared and inherited methods of the class (regardless of their implementation, or lack thereof).
(Sect. 4)

4. What is the nature and frequency of common methods? That is, sets of methods with identical
names and signatures, but that are not contained in any common supertype of the enclosing
classes. (Sect 5.1)

5. How many common methods represent an accidental name clash? (Sect 5.2)

6. Can structural subtyping reduce some types of code duplication? (Sect. 5.3)

7. Is there empirical evidence of a potential synergy between structural subtyping and external meth-
ods? (Sect. 6)

8. Do programs use reflection where structural types would be preferable? (Sect. 7)

Thus, a variety of facets of existing programs were considered. While none of these aspects is conclu-
sive on its own, taken together, the answers to the above questions provide evidence that even programs
written with a nominal subtyping discipline could benefit from structural subtyping. This study pro-
vides initial answers to the above questions; further study is needed to fully examine all aspects of some
questions, particularly questions 5 and 6. Additionally, one must bear in mind that structural subtyp-
ing is not always the appropriate solution; there do exist situations in which nominal subtyping is more
appropriate.

To our knowledge, this is the first systematic corpus analysis to determine the benefits of structural
subtyping. The contribution of this chapter are: (1) identification of a number of characteristics in a
program that suggest the use of implicit structural types; and (2) results from automated and manual
analyses that measure the identified characteristics.

2 Corpus and Methodology

For this study, the source code of up to 29 open-source Java applications were examined (version num-
bers of the applications are provided in Appendix A). The full set of subject programs were used for the
automated analyses, while (while for practical considerations) manual analyses were performed on var-
ious subsets of these (ranging from 2 to 8 members). The applications were chosen from the following
sources: popular applications on SourceForge, Apache Foundation applications, and the DaCapo bench-
mark suite.1

The full set of programs range from 12 kLOC to 161 kLOC, programs that were selected based on
size, type (library/framework vs. sealed applications2) and domain (selecting for variety). For some of
the manual analyses, we favored applications with which we were familiar (as this aided analysis), but
we also aimed for variety in both application type and domain. All of the manual analyses, including
the subjective analyses, were performed by one observer only—the author. The methodology for each
analysis is described in the corresponding section; further details are available in Appendix A.

1http://dacapobench.org/
2Here we define a sealed application as a complete program that is not intended to be directly reused.

2

http://dacapobench.org/

3 Inferring Structural Types for Method Parameters

It is considered good programming practice to make parameters as general as the program allows. Bloch,
for example, recommends favoring interfaces over classes in general—particularly so in the case of pa-
rameter types [3]. An analogous situation arises in the generic programming community, where it is
recommended that generic algorithms and types place as few requirements as possible on their type
parameters (e.g., what methods they should support) [21].

Bloch acknowledges that sometimes an appropriate interface does not exist. For example, class
java.util.Random implements only one (empty) marker interface. In such a case the programmer is forced
to use classes for parameter types—even though it is possible that multiple implementations of the same
functionality could exist [3]. This is a situation where structural subtyping could be beneficial, as it allows
programmers to create supertypes after-the-fact.

As it is impossible to retroactively implement interfaces in Java, we hypothesized that method param-
eter types are often overly specific, and sought to determine both (1) the degree and (2) the character of
over-specificity. To answer question (1), an automated whole-program analysis to infer structural types
for method parameters was performed. Methodology and quantitative results are described in Sect. 3.1.
To properly interpret this data, however, we must consider question (2). Accordingly, the inferred struc-
tural types from the previous analysis were manually examined and the following qualitative question
was considered: would changing a method to have the most general structural type potentially improve
the method’s interface (Sect. 3.2)? Across all applications, the occurrences of inferred structural types
that were supertypes of classes and interfaces of the Java Collections Library were enumerated. Of these,
in Sect. 3.3 those structural types that a client might plausibly wish to implement while not simultane-
ously implementing a more specific nominal type (e.g., Collection, Map, etc.) are presented.

3.1 Quantitative Results

The analysis infers structural types for method parameters, based on the methods that were actually
called on the parameters. (For example, a method may take a List as an argument, but may only use
the add and iterator methods.) The analysis, a simple inter-procedural dataflow analysis, re-computes
structural types for each parameter of a method until a fixpoint is reached. Structural types were not
inferred for calls to library methods (for modularity purposes), nor were they inferred for primitive types,
common types such as String and Object, and cases where the inferred structural type would have a non-
public member. Finally, to simplify the analysis, structural types were not inferred for objects on the
left-hand side of an assignment expression.

The analysis is conservative; in the case where a parameter is not used (or only methods of class
Object are used), no structural type is inferred for it. A parameter may be unused because (a) it is ex-
pected that overriding methods will use the parameter, or (b) because the method may make use of the
parameter when the program evolves, or (c) because it is no longer needed, due to changes in the pro-
gram. In the case of method overriding, the analysis ensures that the same structural types are inferred
for corresponding parameters in the entire method family.

The first set of results appear in Table 1. In Ant, 9.7% of parameters were unused, 47.2% of parameters
had a primitive type, were String, or were Object. For 0.3% of parameters, a call was made to a non-public
method, which means that a structural type could not be used in this case (as the visibility of all members
of a structural interface must be public). 1.0% of parameters could not have a structural type inferred
due to the fact that the associated method was overriding a method in a library. Finally, for 15.8% of
parameters, a structural type could not be inferred, due to the fact that the parameter was assigned to a

3

LOC Unused Primitive Non-public Library Called Assigned % Inferrable % Inferrable
type call override library of total of candidates

Ant 62k 9.7% 47.2% 0.3% 1.0% 9.1% 15.8% 17.0% 40.5%
antlr 42k 16.7% 50.2% 0.4% 0.2% 8.1% 9.0% 15.5% 47.6%
Apache coll 26k 8.4% 55.0% 2.1% 6.0% 1.2% 16.4% 11.0% 38.4%
Areca 35k 9.7% 39.4% 0.1% 4.8% 9.3% 20.5% 16.1% 35.1%
Cayenne 95k 8.3% 47.0% 0.5% 3.1% 8.1% 11.2% 21.9% 53.2%
Columba 70k 11.6% 40.8% 0.6% 19.8% 5.5% 9.0% 12.6% 46.4%
Crystal 12k 18.0% 4.1% 0.2% 17.9% 7.4% 22.3% 30.1% 50.3%
DrJava 59k 13.5% 42.5% 0.8% 13.2% 7.8% 7.8% 14.3% 47.9%
Emma 23k 20.5% 42.3% 0.4% 0.9% 7.4% 8.8% 19.6% 54.6%
freecol 62k 8.7% 38.5% 0.0% 11.5% 3.9% 11.8% 25.5% 61.9%
hsqldb 62k 14.4% 61.3% 6.4% 3.9% 1.0% 4.8% 8.2% 58.5%
HttpClient 18k 14.3% 55.7% 0.1% 0.3% 5.7% 5.1% 18.8% 63.5%
jEdit 71k 11.8% 56.9% 1.0% 9.7% 4.9% 8.5% 7.2% 35.1%
JFreeChart 93k 8.1% 45.9% 0.4% 1.4% 14.3% 10.4% 19.6% 44.2%
JHotDraw 52k 18.3% 32.3% 0.0% 7.7% 11.1% 10.1% 20.5% 49.2%
jruby 86k 19.7% 27.2% 0.4% 0.8% 3.0% 16.0% 32.9% 63.4%
jung 26k 8.1% 33.8% 0.1% 4.8% 22.9% 12.0% 18.2% 34.3%
LimeWire 97k 13.7% 45.8% 1.4% 7.1% 7.9% 6.7% 17.5% 54.5%
log4j 13k 12.3% 46.8% 0.7% 4.7% 6.6% 10.0% 18.8% 53.1%
Lucene 24k 12.3% 58.3% 0.6% 0.1% 4.9% 14.8% 9.2% 31.8%
OpenFire 90k 14.0% 39.7% 0.2% 6.1% 7.6% 10.9% 21.4% 53.5%
plt collections 19k 15.8% 19.5% 0.3% 3.0% 6.8% 42.1% 12.4% 20.3%
pmd 38k 31.3% 32.7% 0.0% 1.3% 6.5% 8.4% 19.7% 56.9%
poi 50k 15.9% 69.8% 0.7% 3.3% 1.3% 2.1% 6.7% 66.2%
quartz 22k 15.4% 54.2% 0.0% 0.8% 5.9% 5.6% 18.2% 61.2%
Smack 40k 17.2% 45.3% 0.2% 1.6% 12.5% 8.1% 15.1% 42.2%
Struts 28k 6.3% 58.1% 0.1% 4.4% 5.1% 18.9% 7.1% 22.8%
Tomcat 126k 13.6% 54.6% 0.1% 3.2% 3.7% 11.0% 13.8% 48.3%
xalan 161k 10.5% 56.5% 1.3% 2.7% 2.5% 10.9% 15.7% 54.1%

Average 13.7% 44.9% 0.7% 5.0% 7.0% 12.0% 16.7% 47.9%

Table 1: Categories of method parameters when running structural type inference over 29 programs.
“Unused” denotes the percentage of parameters that were not transitively used in the program, “prim-
itive type” is the percentage of parameters that were either a primitive type, or were String or Object,
“non-public call” is the percentage of parameters on which a non-public method was called (in which
case a structural type could not be inferred), and “library override” is the percentage of paramters for
which a structural type could not be inferred due to the fact that the method was an override of a library
method. “Called library” is the percentage of parameters for which a structural type could not be in-
ferred because a library method was transitively called and “assigned” is the percentage of parameters
that were assigned to a local or member variable and did not have structural types computed. “Percent
inferrable of total” is the percentage of all parameters that could have a structural type inferred, while
“percent inferrable of candidates” is the percentage of inferrable parameters, when considering only
those parameters for which a structural type would be meaninful.

4

local variable or member variable (this was a limitation of the analysis).

Considering all parameters, an average of 16.7% could have a structural type inferred. However, if we
exclude parameters that fall into the categories in columns 3–6 (i.e., unused parameters, primitive types,
non-public calls, and library overrides), then an average of 47.9% of parameters could have a structural
type inferred. This second figure is more relevant, as it is not meaningful to infer structural types for
parameters that fall into the aforementioned categories.

The analysis also computed some characteristics of these structural types that were inferred; results
are displayed in Table 2. An average of 94.0% of parameters were declared with an overly precise nominal
type (i.e., the nominal type contained more methods than were actually needed). For an average of 91.8%
of the inferred parameters a corresponding nominal type did not exist in the program that would make
the parameter type as general as possible (i.e., a nominal type that contained only those methods transi-
tively called on the object). There were an average of 3.7 methods in the inferred structural types, across
all programs, while there were an average of 41.7 methods in the corresponding nominal types. Finally,
there was an average median of 1.2 structural types inferred for each nominal type in the program, and
an average maximum of 23.4 structural types.

Note that the data shows that inferred structural types do not have many methods,3, while the corre-
sponding nominal types have quite a few methods. This shows that there is quite a large degree of over
specificity—more than a full order of magnitude—in addition to the large percentage of overly specific
parameters. This is likely due to the overhead of naming and defining nominal types, as well as the lack
of retroactive interface implementation. The analysis also showed that when nominal types were as gen-
eral as possible, they had very few members—one or two on average. This is in accordance with previous
work which found that interfaces are generally smaller than classes [23].

Additional data. For a given nominal type, there were not many corresponding structural types (2.5
on average, a median of 1.2). The data followed a power law distribution, with an average maximum
of 24; that is, small values were heavily represented, but there were also a few large values. The low
median suggests that the overhead of naming structural types is not necessarily high; it is plausible that
programmers would be able to name and use structural types for around half of the nominal parameter
types.

Finally, if we were to define new interfaces everywhere possible, the average increase in the number
of interfaces is 313%, the median is 287%, and the maximum is 1000%. This illustrates the infeasibility
of defining new nominal types for the inferred structural types. Note that only those interfaces for which
the implements clause of a class could be modified (i.e., those classes in the program’s source) were con-
sidered; in general, the situation is even worse, as programmers may wish to define new supertypes for
types contained in libraries.

3.2 Qualitative Results

Though the results show that many parameters are overly specific, it is not necessarily a good design to
make every parameter as general as possible. This is because a method might be currently only using a
particular set of methods, but later code modifications may make it necessary to use a larger set; a more
general type could hinder program evolution. On the other hand, more general types make methods

3There is one outlier in the data; in pmd, inferred structural types had 29.5 methods on average. This is due to the use of the
visitor design pattern—all visit methods are accessible from the top visitor accept method, since each override calls a specific
visit method.

5

LOC % Inferrable % Overly % Structural Avg methods/ Avg methods/ Struct types/nominal
specific needed structural type nominal type median max

Ant 62k 40.5% 98.6% 97.7% 2.1 36.0 1 27
antlr 42k 47.6% 100.0% 98.8% 2.2 14.0 2 9
Apache coll 26k 38.4% 89.5% 83.0% 2.0 16.0 1 11
Areca 35k 35.1% 99.1% 97.4% 2.8 35.9 1 35
Cayenne 95k 53.2% 96.3% 92.6% 2.4 31.3 2 27
Columba 70k 46.4% 99.6% 98.8% 1.9 51.6 1 19
Crystal 12k 50.3% 98.8% 96.6% 3.2 15.7 1 19
DrJava 59k 47.9% 89.5% 87.1% 3.2 56.3 1 20
Emma 23k 54.6% 88.2% 87.8% 3.4 17.1 1 9
freecol 62k 61.9% 98.6% 97.9% 2.6 84.8 1 57
hsqldb 62k 58.5% 99.4% 99.4% 1.7 48.9 2 34
HttpClient 18k 63.5% 96.3% 94.8% 3.5 27.0 1 17
jEdit 71k 35.1% 95.5% 95.5% 2.2 119.6 1 20
JFreeChart 93k 44.2% 97.7% 93.5% 3.3 53.9 1 35
JHotDraw 52k 49.2% 100.0% 97.2% 3.0 57.0 2 19
jruby 86k 63.4% 98.1% 97.5% 6.9 66.1 1 85
jung 26k 34.3% 96.3% 88.3% 1.8 32.1 1 15
LimeWire 97k 54.5% 98.5% 94.9% 2.1 34.6 1 21
log4j 13k 53.1% 96.5% 95.0% 2.3 56.7 1 6
Lucene 24k 31.8% 80.5% 77.4% 1.6 13.5 1.5 8
OpenFire 90k 53.5% 99.4% 96.7% 2.4 37.1 1 45
plt collections 19k 20.3% 58.2% 59.3% 1.5 39.8 1 25
pmd 38k 56.9% 72.9% 69.1% 29.5 48.2 2 23
poi 50k 66.2% 88.0% 87.0% 1.9 22.8 1 8
quartz 22k 61.2% 100.0% 99.1% 2.2 36.6 1 11
Smack 40k 42.2% 100.0% 91.6% 4.4 29.2 1 13
Struts 28k 22.8% 96.4% 96.4% 2.1 32.4 1 13
Tomcat 126k 48.3% 96.8% 96.3% 4.5 37.6 2 32
xalan 161k 54.1% 96.4% 96.0% 5.3 56.5 1 16

Average 47.9% 94.0% 91.8% 3.7 41.7 1.2 23.4

Table 2: Results of running structural type inference. Percent inferrable is the percentage of candidate
parameters that could have a structural type inferred (i.e., last column in Fig. 1), percent overly specific is
the percentage of the inferrable parameters that have an overly specific nominal type, percent structural
needed is the percentage of the inferrable parameters for which a most general nominal type does not
exist, average methods per structural type is the average number of methods in the inferred structural
types, average methods per nominal type is the average number of methods in nominal types that appear
as parameter types (including inherited methods), and median/maximum structural types per nominal
are the median and maximum, respectively, of the number of inferred structural types corresponding to
each nominal type.

more reusable, which aids program evolution. For this reason, a refactoring to structural types (or even
structural type inference) cannot be a fully automated process—programmers must consider each type
carefully, keeping in view the kinds of program modifications that are likely to occur. Additionally, for
some structural types, there may ever be only one corresponding nominal type, in which case using a
structural type is of limited utility.

Accordingly, an empirical question was considered: would changing a given method to have the most
general structural types for its parameters make the method more general in a way that could improve
the program? To determine this, we inspected each method and asked two questions. First, does the
inferred parameter type S generalize the abstract operation performed by the method, as determined by

6

the method name? Second, does it seem likely that there would be multiple subtypes of S?
Two applications were studied: Apache Collections (a collections library) and Crystal (a static anal-

ysis framework). Of methods for which a structural type was inferred on one or more parameters, we
found that 58% and 66%, respectively, would be generalized in a potentially useful manner if the inferred
types were used.

For example, in Apache Collections, in the class OnePredicate (a predicate class that returns true only
if one of its enclosing predicates returns true), the factory method getInstance(Collection) had the struc-
tural type { iterator(); size(); } inferred for its parameter. This would make the method applicable to any
collection that supported only iteration and retrieving the collection size, even if it didn’t support collec-
tion addition and removal methods. There were 25 other methods in the library that used this structural
type. Another example is the method ListUtils.intersection which takes two List objects. However, the first
List need only have a contains method, and the second List need only have an iterator method (for this
latter parameter, the interface Iterable could be used). There were also 8 methods that took an Iterator as
a parameter, but never called the remove method. With a structural type for the method, the type would
clearly specify that a read-only iterator can be passed as an argument.

In Crystal, two methods took a Map parameter that used only the get and put methods. Converting
the method to use this structural type would make it applicable to a map that did not support iteration
(such a type exists in Apache Collections, for example). Also, there were 11 methods that use only the
methods getModi�ers() and getName() on an IBinding object (an interface in the Eclipse JDT). Replac-
ing the nominal type with a structural type would allow the program to substitute a different “bindings”
class that supported only those two methods.

Of course, for some of these structural types, there may not be a large number of classes that imple-
ment its methods but not all of the methods of a more specific nominal type, e.g., Collection. However,
we believe that all of the aforementioned types represent meaningful abstractions. Furthermore, since
it is conceivable that a programmer may define a class implementing that abstraction, using these more
general types would increase the applications’ reusability.

3.2.1 Translation to Whiteoak

Using the inference algorithm, we also developed an automated translation of programs from Java to
Whiteoak [14], a research language that extends Java with support for structural subtyping. we performed
this translation on two programs: Apache Collections and Lucene, confirming the correctness of the
analysis and demonstrating its practical use.

3.3 Uses of Java Collections Library

We next considered inferred structural types that were supertypes of interfaces and classes in the Java
Collections Library. Over all applications, there were 67 distinct types in total, though not all appeared
to express an important abstraction. We made a conservative subjective finding that at least 10 of these
types were potentially useful; these are displayed in Table 3, along with a description of possible imple-
mentations. For instance, there were 168 inferred parameters that used only the get() and containsKey()
methods of Map. It would be useful to have a type corresponding to this abstraction, particularly if the
map is immutable and must have its contents set at creation-time. A type consisting of these two meth-
ods would also be useful to support the pattern that once a map is populated, clients should not make
modifications.

The relatively high number of occurrences of each of these structural types suggests their utility, even

7

Methods in type Uses Description

get(Object); containsKey(Object); 168 Read-only non-iterable map; for instance, a read-only
hashtable4

iterator(); isEmpty(); size(); 114 Read-only iterable collection that knows its size; for in-
stance, a read-only list

add(Object); addAll(Collection); 101 Write-only collection; for instance, a log
put(Object, Object); 55 Write-only map
hasNext(); next(); 28 Read-only iterator
contains(Object); 21 Read-only collection that does not support iteration; for in-

stance, a read-only hashset
get(Object); put(Object, Object); 15 Non-iterable map; for instance, a hashtable
contains(Object); iterator(); size(); 11 Read-only iterable collection that knows its size and can

be polled for the existence of an element; for instance, an
iterable hashset

add(Object); contains(Object); iterator(); size(); 10 Same as above, but that also supports adding elements
iterator(); size(); toArray(Object[]); 8 Read-only collection that can be converted to an array; for

instance, a read-only array

Table 3: Uses of Java Collections classes across 29 programs, as inferred using the parameter structural
type inference. (Erasures are used in lieu of generic types.)

though the types contain few methods. It further shows that programs routinely make use of types that
the library designers either did not anticipate or chose not to support.

In summary, the data shows that programs make repeated use of many implicit structural types. A
language that would allow defining these types explicitly could be beneficial, as it can help programmers
make their methods more generally applicable.

3.4 Related work

Forster [12] and Steimann [22] have described experience using the Infer Type refactoring, which gen-
erates new interfaces for inferred types and replaces uses of overly specific types with these interfaces.
This analysis is more general than the one used here, because it considers all type references, not just pa-
rameter types. However, the refactoring is limited by the fact that classes in libraries cannot retroactively
implement new interfaces. Steimann found that when applying this refactoring, the number of total in-
terfaces almost quadrupled—an increase of 369%.5 In his analysis, there were an average of 2.8 and 4.5
reference per inferred type, respectively, in the two studied applications, DrawSWF and JHotDraw. By
comparison, in DrawSWF, we found that structural types were used in an average of 2.7 parameters; for
JHotDraw this value was 3.3, which differs from Steimann’s result. This discrepancy is likely due to the
fact that he considered types other than those of parameters. Additionally, both Forster and Steimann
found that the number of variables typed with each new inferred interface followed a power law distri-
bution, which is what we also found for parameters.

3.4.1 Summary of results

In summary, the parameter analysis suggests that there are many nominal types that could be made more
general using structural subtyping, and most of these were qualitatively determined to be useful. Also,

5This differs slightly from our average of 313%, though this difference is likely due to the fact that Steimann considered only
two applications.

8

Number of classes

Read-only Iterator 50
Read-only Collection 19
Read-only Map 9
Read-only Map.Entry 6
Read-only ListIterator 6
Collection supporting everything but removal 5
Map supporting everything but removal 4
Collection supporting only read and removal methods 1
Collection supporting iteration, addition, and size only 1
ListIterator supporting read, add, and remove (but not set()) 1
ListIterator supporting only read and set() operation 1
Map supporting read, put, and size only 1
Map supporting read and put, but not size or removal 1
Map supporting everything but entrySet(), values() and containsValue() 1

Table 4: A selection of the structural interfaces “implemented” by classes in the subject programs once
methods unconditionally throwing anUnsupportedOperationException are removed. (Actual method sets
are omitted to conserve space.)

the inferred structural types had an order of magnitude fewer methods than the corresponding nominal
types. It is infeasible to define new nominal types to correct this, due to the number of structural types
inferred per nominal type and the resulting percentage increase in interfaces.

4 Throwing “Unsupported Operation” Exceptions

In the Java Collections Library, there are a number of “optional” methods whose documentation permits
them to always throw an exception. This decision was due to the practical consideration of avoiding
an “explosion” of interfaces; the library designers mentioned that at least 25 new interfaces would be
otherwise required [18].

To determine if such super-interfaces would be useful in practice, the methods in the subject pro-
grams that unconditionally throw an UnsupportedOperationException were totalled. The program that
had the most such methods was Apache Collections: there were 148 methods that unconditionally throw
the exception (out of 3669 total methods, corresponding to 4%). Next, those methods that were overrid-
ing a method in the Java Collections Library were considered. To encode these optional methods directly
would require 18 additional interfaces. There are only 27 interfaces defined in the library, so this rep-
resents a 67% increase. Note that this is a conservative estimate, as interactions between classes (e.g.,
an Iterable returning a read-only Iterator) were not considered. A selection of these structural super-
interfaces is summarized in Table 4. For instance, there were 50 iterator classes that did not support the
remove() operation, and 19 subclasses of Collection that supported a read-only interface.

Note that, with the exception of the read-only iterator, the sets of interfaces in Tables 4 and 3 are
distinct from one another (though some are subtypes). This is likely due to the fact that different appli-
cations use different subsets of the methods of a class.

Structural subtyping could be helpful for statically ensuring that “unsupported operation” exceptions
cannot occur, as it would allow programmers to express these super-interfaces directly.

9

5 Common Methods

In my experience, there are situations where two types share an implicit common supertype, but this
relationship is not encoded in the type hierarchy. For example, suppose two classes both have a getName
method with the same signature, but there does not exist a supertype of both classes containing this
method. We call getName, and methods like it, common methods. Common methods can occur when
programmers do not anticipate the utility of a shared supertype or when two methods have the same
name, but perform different operations; e.g., Cowboy.draw() and Circle.draw() [16].

Accordingly, this section aims to answer three questions: (1) how often do common methods occur,
(2) how many common methods represent an accidental name clash, and (3) do common methods result
in code clones?

5.1 Frequency

A simple whole-program analysis to count the number of common methods in each application was
performed. Only public instance methods were considered (resulting in slightly different data than that
previously presented [17]). Results are in Table 5. Overall, common methods comprise an average of 19%
of all public instance methods. That is, for 19% of methods, there existed another method with the same
name and signature and the method was not contained in a common supertype of the enclosing types.

The number of types that share at least two common methods with another type was also computed;
there were an average of 9% of such types. These are the cases in which a structural supertype is most
likely to be useful. This high percentage indicates that there are a number of implicit structural types in
most applications.

For example, in Apache Collections, Unmodi�ableSortedMap and OrderedMap share the methods
�rstKey() and lastKey(). And, AbstractLinkedList and SequencedHashMap share the methods getFirst()
and getLast(). Finally, BoundedMap and BoundedCollection have the common methods isFull() and
maxSize().

In Lucene, a document indexing and search library, RAMOutputStream and RAMInputStream both
support the seek(), close(), and getFilePointer() methods, which might be useful to move to a su-
pertype. Also, the classes PhraseQuery and MultiPhraseQuery both support the methods add(Term),
getPositions(), getSlop(), and setSlop(int).

5.2 Accidental Name Clashes

Of course, to interpret this data, we must consider cases where the common methods have the same
meaning, and where callers are likely to call the methods with the same purpose in mind. If two meth-
ods have the same meaning, it might be useful to define a structural type consisting of that method.
Two methods are defined as “having the same meaning” if they perform the same abstract operation,
taking into account (a) the semantics of the method, and (b) the semantics of the enclosing types. This
determination was made by examining the source code, using javadoc where available.

Two applications were studied: Apache Collections and Lucene. In Collections, under condition
(a), there were no methods that had the same signature but performed different abstract operations.
However, there were 2 cases (1% of all common methods) where the methods had the same meaning,
but the enclosing classes did not appear to be semantic subtypes of some common supertype con-
taining that method; i.e., condition (b) was not satisfied. For example, the classes ChainedClosure and

10

LOC Number of Types with >1 Percentage % common Avg # classes/
types common method methods common signature

Ant 62k 945 65 6.9% 31.3% 3.7
antlr 42k 226 26 11.5% 23.6% 2.7
Apache Collections 26k 550 19 3.5% 7.3% 2.7
Areca 35k 362 30 8.3% 15.4% 2.7
Cayenne 95k 1415 104 7.3% 18.1% 2.8
Columba 70k 1232 48 3.9% 17.3% 3.1
Crystal 12k 211 4 1.9% 5.1% 2.9
DrJava 59k 927 65 7.0% 12.1% 2.6
Emma 23k 443 22 5.0% 18.7% 3.4
freecol 62k 569 55 9.7% 20.6% 2.7
hsqldb 62k 355 31 8.7% 19.5% 2.6
HttpClient 18k 231 19 8.2% 15.0% 2.6
jEdit 71k 880 40 4.5% 11.7% 2.5
JFreeChart 93k 789 301 38.1% 39.5% 3.9
JHotDraw 52k 616 59 9.6% 19.0% 2.8
jruby 86k 997 83 8.3% 15.6% 3.1
jung 26k 531 24 4.5% 19.3% 2.4
LimeWire 97k 1689 88 5.2% 17.7% 3.1
log4j 13k 201 4 2.0% 13.6% 2.4
Lucene 24k 398 21 5.3% 13.4% 2.6
OpenFire 90k 1039 110 10.6% 19.0% 3.0
plt collections 19k 812 60 7.4% 7.5% 2.8
pmd 38k 478 24 5.0% 12.0% 2.7
poi 50k 539 62 11.5% 20.9% 2.6
quartz 22k 158 24 15.2% 20.0% 2.4
Smack 40k 847 115 13.6% 23.5% 3.3
Struts 28k 609 158 25.9% 45.2% 2.7
Tomcat 126k 1727 234 13.5% 32.6% 3.6
xalan 161k 1223 94 7.7% 16.1% 2.9

Average 9.3% 19.0% 2.9

Table 5: Common methods for each application. Number of types indicates the total number of types in
the application, types with greater than one common method is the number of types that share more than
one common method, percentage is the percentage of this compared to the total number of types, percent
common methods is the percentage of public instance methods that is a common method, and average
number of classes per common signature is the average number of classes for each common method
signature.

SwitchClosure both had a getClosures() method, but ChainedClosure calls each of these closures in turn,
while SwitchClosure calls that closure whose predicate returns true.

In Lucene, there were 42 instances of methods that had the same signature, but did not have the
same meaning (19% of all common methods). In 32 of these cases, the methods were actually perform-
ing a different abstract operation. For example, HitIterator.length() returned the number of hits for a
particular query, while Payload.length() returned the length of the payload data. An additional 10 cases
did not satisfy condition (b) above. For example, in a high-level class IndexModi�er, there were several
cases where a method m performed some operation, then called IndexWriter.m, the latter performing a
lower-level operation. So, the semantics of the methods were similar, but the semantics of each class was
different.

Overall, the data is promising, as it indicates that most common methods have the same meaning
and would benefit from being contained in a structural supertype—90% on average, across both appli-

11

private InlineMethodRefactoring(ICompilationUnit unit,
MethodInvocation node, int offset, int length)

{
this(unit, (ASTNode)node, offset, length);

fTargetProvider= TargetProvider.create(unit, node);

fInitialMode= fCurrentMode= Mode.INLINE_SINGLE;

fDeleteSource= false;

}

private InlineMethodRefactoring(ICompilationUnit unit,
SuperMethodInvocation node, int offset, int length)

{
... // same method body as above

}

Figure 1: Example of code duplication in the Eclipse JDT. Structural subtyping could eliminate this du-
plication.

cations. Structural subtyping would allow these methods to be called in a generic manner, without the
need to create additional interfaces.

5.3 Code Clones

We hypothesized that common methods can lead to code clones, as there is a common structure that is
not expressed in the type system. To determine this, two applications were examined: Eclipse JDT and
Azureus.

In the Eclipse Java Development Tools (JDT), the classes FieldAccess and SuperFieldAccess
have no superclass other than Expression. The same problem occurs with MethodInvocation and
SuperMethodInvocation, and ConstructorInvocation and SuperConstructorInvocation. We found 44 code
clones involving these types (though some were only a few lines long). An example of a code clone in-
volving MethodInvocation and SuperMethodInvocation appears in Fig. 1. Another code clone involving
SuperConstructorInvocation and ConstructorInvocation appears in Fig. 2.

Similarly, in the Eclipse SWT (Simple Windowing Toolkit), there are 13 classes (such as Button, Label,
and Link) with the methods getText and setText that get and set the main text for the control. But, there
is no common IText interface. Azureus, a BitTorrent client, is an application that requires the ability to
call these methods in a generic fashion. Azureus is localized for a number of languages, which can be
changed at runtime. Accordingly, there are several instances of code similar to that of Fig. 3.

Note that some of this code duplication might be avoided if the class hierarchy were refactored. Ob-
viously, this is not always possible—e.g., Azureus cannot modify SWT.

The code duplication in these examples can be dramatically reduced by taking advantage of struc-
tural types. For example, Fig. 4 shows how the code block of Fig. 3a could be re-written with structural
types in the Unity language [17].

In summary, common methods can lead to undesirable code duplication. Structural subtyping can
help eliminate this problem, without refactoring the class hierarchy.

12

case ASTNode.SUPER_CONSTRUCTOR_INVOCATION: {

SuperConstructorInvocation superInvocation= (SuperConstructorInvocation) parent;

IMethodBinding superBinding= superInvocation.resolveConstructorBinding();
if (superBinding != null) {

return getParameterTypeBinding(node, superInvocation.arguments(), superBinding);
}
break;

}
case ASTNode.CONSTRUCTOR_INVOCATION: {

ConstructorInvocation constrInvocation= (ConstructorInvocation) parent;

IMethodBinding constrBinding= constrInvocation.resolveConstructorBinding();
if (constrBinding != null) {

return getParameterTypeBinding(node, constrInvocation.arguments(), constrBinding);
}
break;

}

Figure 2: Code duplication involving SuperConstructorInvocation and ConstructorInvocation. Only the
highlighted lines of code differ in the two blocks.

if (widget instanceof Label)

((Label) widget). setText(message);

else if (widget instanceof CLabel)

((CLabel) widget). setText(message);

else if (widget instanceof Group)

((Group) widget). setText(message);

... // 5 more items

if (widget instanceof CoolBar) {

CoolItem[] items = ((CoolBar)widget).getItems();

for(int i = 0; i < items.length; i++) {

Control control = items[i].getControl();

updateLanguageForControl(control);

}
} else if (widget instanceof TabFolder) {

... // same code as highlighted above
} else if (widget instanceof CTabFolder) {

... // same code as highlighted above
... // 5 more items

(a) (b)

Figure 3: Code excerpts from Azureus, illustrating an awkward coding style and duplication.

6 Cascading instanceof Tests

We considered the question of whether structural subtyping could provide benefits if used in conjunc-
tion with other language features—external methods in particular. External methods (also known as
open classes) are similar to ordinary methods and provide the the usual dispatch semantics, but can be
implemented outside of a class’s definition, providing more flexibility. Multimethods are a generalized
form of external method, defined outside all classes and allowing dispatch on any subset of a method’s
arguments [9, 4, 10, 17].

Since Java does not support any form of external dispatch, programmers often compensate by using
cascading instanceof tests. This programming pattern is problematic because it is tedious, error-prone,
and lacks extensibility [10]. Many instances of this pattern could be re-written to use external methods,

13

let
widget: Widget(setText: ()⇒ string→ unit) = . . .

in
widget.setText message

Figure 4: Code block of Fig. 3a re-written using structural types.

Original Java Code

List qlist = ...
Object query = qlist.get(i);
Query q = null;
if (query instanceof String)

q = parser.parse((String) query);
else if (query instanceof Query)

q = (Query) query;
else

System.err.println("Unsupported query type");

Unity Re-Write

method string.toQuery: ()⇒ QueryParser→ Query =
fun parser: QueryParser --> parser.parse this

method Query.toQuery: ()⇒ QueryParser→ Query =
fun _ --> this

. . .
using toQuery in

type QueryConvert = Object(toQuery: ()⇒ QueryParser→ Query)
let qlist: List<QueryConvert> = . . .
let q : Query = qlist.get(i).toQuery(parser)

Figure 5: Rewriting instanceof using structural subtyping and external dispatch. At the top is the original
code; below is the translated code, which defines the structural type QueryConvert and external methods
on Query and String. Note that the translated code eliminates the need for the error condition.

but a problem arises if an instanceof test is performed on an expression of type Object.
To illustrate this, let us consider how instanceof tests would be translated to external methods. Sup-

pose we have a cascaded instanceof, with each case of the form “[else] if expr instanceof Ci { blocki }.” This
would be translated to an external method f defined on expr’s class, and overridden for each Ci by defin-
ing Ci . f { blocki }. The bottom part of Fig. 5 shows the external methods translated from the instanceof
tests above it (but without an external method defined on Object, the type of query, which we will come
to in a moment).

A problem arises when the target expression in the instanceof test is of type Object, as an external
method must be defined on Object, then overridden for each type tested via an instanceof. The problem

14

instanceof Expression of type Object Percentage

Apache collections 225 75 33%
Areca 77 10 13%
JHotDraw 229 50 22%
log4j 54 8 15%
Lucene 56 10 18%
PLT collections 119 64 54%
Smack 56 20 36%
Tomcat 959 158 16%

Average 26%

Table 6: Total instanceof tests, the number present in cascading if statements that perform the test on an
expression of type Object, and that number expressed as a percentage. Code written using this pattern
can be translated to a language with structural subtyping and external dispatch.

with this solution is that it pollutes the interface of Object. In many cases, the implementation of this
method performs a generic fallback operation that does not make sense for an object of arbitrary type—
but this method becomes part of every class’s interface and implementation. (While it is also possible to
pollute the interface of an arbitrary class C , this is generally less severe, and detecting such a situation
requires application-specific knowledge.)

To determine the prevalence of this pattern, instanceof tests in 8 applications were manually exam-
ined. The result of this analysis was that 13% to 54% (with an average of 26%) were performing a cascad-
ing instanceof test on an expression of type Object (see Table 6).

Structural subtyping provides one solution to this problem. We have previously defined a language,
Unity, that supports both structural subtyping and external dispatch [17]. Using structural types, the type
of the expression on which the instanceof is performed would be changed from Object to the structural
type consisting of the newly defined external method f . That is, instead of making the target opera-
tion applicable to an arbitrary object, it would be applicable to only those objects that contain method
f . Figure 5 defines an external method toQuery on String and Query, then uses the structural type { to-
Query(...) } as the type for the List elements. The advantage of using structural subtyping is that the main
code can call this method uniformly. 6

Thus, for many applications, there is a potential benefit to using structural subtyping in a language
that supports external dispatch; an average of 26% of instanceof tests could be eliminated.

Note that since we refined the element type of the List object, this obviates the need for the error
condition—an additional advantage. However, it is not always possible to refine types to a structural
type; an expression may simply have type Object, due to the loss of type information. In such a case, it
would be possible to re-write the code using a structural downcast. Though the use of casts would not
be eliminated, there are still several advantages to this implementation style. First, the external methods
could be changed without having to also modify the method that uses them. Also, if subclasses are added,
a new internal or external method could be defined for them. Finally, since the proposed cast would use
a structural type, it would be more general, applying to any type for which the method were defined.

6Note that it would not be possible to make use of a nominal interface containing the method f to call the method in a
generic manner. For external methods to be modular, once a method is defined as an internal method, it cannot be imple-
mented with an external method; see [19, 10].

15

Uses of getMethod() Could be rewritten Percentage

Ant 36 9 25%
Apache Collections 4 3 75%
Areca 1 0 0%
Azureus 27 6 22%
Cayenne 28 4 14%
columba 10 8 80%
DrJava 7 2 29%
emma 2 1 50%
freecol 1 1 100%
hsqldb 2 0 0%
HttpClient 8 6 75%
jedit 10 7 70%
jfreechart 1 1 100%
JHotDraw 26 1 4%
jruby 17 6 35%
jung 1 1 100%
log4j 4 1 25%
openfire 2 0 0%
pmd 2 2 100%
quartz 3 2 67%
struts 2 0 0%
tomcat 37 10 27%
xalan 28 11 39%

Totals 259 82 32%

Table 7: Uses of the reflection method Class.getMethod, and the number and percentage that could be
re-written using a structural downcast. Programs that did not call this method are omitted. The per-
centage entry in the last row is calculated by dividing the total “could be rewritten” by the total “uses of
getMethod.”

7 Java Reflection Analysis

We aimed to answer the following question: do Java programs use reflection where structural types
would be more appropriate? Uses of reflection likely fall into two categories: cases where dynamic class
instantiation and classloading are used, and cases where the type system is not sufficiently powerful to
express the programming pattern used. It is difficult to eliminate reflection in the first category, as these
uses represent an inherently dynamic operation. However, some of the uses in the second category could
potentially be rewritten using structural downcasts. Reducing the uses of reflection is beneficial as it de-
creases the number of runtime errors and can improve performance.

Across the 29 subject programs, an average of 32% of uses of the reflection method Class.getMethod
could be re-written using a structural downcast (see Table 7). A structural downcast is preferable to re-
flection because type information is retained when later calling methods, as opposed to Method.invoke,
which is passed anObject array and must typecheck the arguments at runtime. Additionally, it is easier to
combine sets of methods in a downcast; when using reflection, each method must be selected individu-
ally. There is also the potential to make method calls more efficient, which is difficult with reflection, due
to the low-level nature of the available operations. (For example, the language Whiteoak [14] supports
efficient structural downcasts.)

In summary, the high percentage of reflection uses that can be translated to structural downcasts
suggests that programmers may sometimes use reflection as a workaround for lack of structural types.

16

8 Related Work

As mentioned in Sect. 3, researchers have studied the problem of refactoring programs to use most gen-
eral nominal types where possible [12, 22]. Structural subtyping would make such refactorings more
feasible (since new types would not have to be defined) and applicable to more type references in the
program (since structural supertypes for library types could be created, while new interfaces cannot).

Muschevici et al. measured the number of cascading instanceof tests in a number of Java programs,
to determine how often multiple dispatch might be applicable [20]. They found that cascading instanceof
tests were quite common, and that many cases could be rewritten to use multimethods; this is consistent
with my results.

Corpus analysis is commonly used in empirical software engineering research. For example, it has
been used to examine non-nullness [8], aspects [2], micro-patterns [13], and inheritance [23].

9 Summary and Conclusions

In summary, we found that a number of different aspects of Java programs suggest the potential utility
of structural subtyping. While some of the results are not as strong as others, taken together the data
suggests that programs could benefit from the addition of structural subtyping, even if they were written
in a nominally-typed language. In particular, structural subtyping has the potential be used to improve
the reusability and maintainability of existing object-oriented programs.

We presented evidence suggesting that structural subtyping could help make method parameters
more general (Sect. 3). There was a high frequency of common methods (Sect 5.1), and a low frequency
of common methods representing an accidental name clash (Sect 5.2). We also saw evidence that some
cases of code duplication could be avoided with structural subtyping (Sect. 5.3).

Additionally, we showed that existing language designs can lead to coding patterns that de-
fer errors to runtime, coding patterns that could be re-written with structural subtyping to pro-
vide more static typechecking in these situations. In particular, some Java runtime exceptions (i.e.,
OperationUnsupportedException) can be eliminated in a straightforward manner with a design that uses
structural subtyping (Sect. 4). Additionally, some uses of Java reflection can be converted to uses of
structural subtyping (Sect. 7).

Finally, the study in Sect. 6 showed the synergy between structural subtyping and external dispatch.
The data showed that many cases of cascading instanceof tests in Java programs can improved if re-
written using a combination of structural subtyping and external methods, a re-writing which allows an
existing class to be adapted to a new context.

We hope that the results of this study will be used to inform designers of future programming lan-
guages, as well as serve as a starting point for further empirical studies in this area. Ultimately, one must
study the way structural subtyping is eventually used by mainstream programmers; this work serves as a
step in that direction.

Acknowledgements

We would like to thank Ewan Tempero for helpful discussions and feedback, and Nels Beckman and
the reviewers for comments on an earlier version of this paper. This research was supported in part
by the U.S. Department of Defense, Army Research Office grant number DAAD19-02-1-0389 entitled
“Perpetually Available and Secure Information Systems,” and NSF CAREER award CCF-0546550.

17

References

[1] R. Amadio and L. Cardelli. Subtyping recursive types. ACM TOPLAS, 15(4), 1993.

[2] P. Baldi, C. Lopes, E. Linstead, and S. Bajracharya. A theory of aspects as latent topics. In OOPSLA,
2008.

[3] J. Bloch. Effective Java, Second Edition. Addison-Wesley, 2008.

[4] J. Boyland and G. Castagna. Parasitic methods: an implementation of multi-methods for Java. In
OOPSLA ’97, pages 66–76, 1997.

[5] G. Bracha and D. Griswold. Strongtalk: typechecking Smalltalk in a production environment. In
OOPSLA ’93, pages 215–230, 1993.

[6] K. Bruce, A. Schuett, R. van Gent, and A. Fiech. PolyTOIL: A type-safe polymorphic object-oriented
language. ACM Trans. Program. Lang. Syst., 25(2):225–290, 2003.

[7] L. Cardelli. Structural subtyping and the notion of power type. In POPL ’88, 1988.

[8] P. Chalin and P. James. Non-null references by default in Java: Alleviating the nullity annotation
burden. In ECOOP, 2007.

[9] C. Chambers. Object-oriented multi-methods in Cecil. In ECOOP ’92, 1992.

[10] C. Clifton, T. Millstein, G. Leavens, and C. Chambers. MultiJava: Design rationale, compiler imple-
mentation, and applications. ACM TOPLAS., 28(3):517–575, 2006.

[11] K. Fisher and J. Reppy. The design of a class mechanism for Moby. In PLDI, 1999.

[12] Florian Forster. Cost and benefit of rigorous decoupling with context-specific interfaces. In PPPJ
’06, pages 23–30, 2006.

[13] J. Gil and I. Maman. Micro patterns in Java code. In OOPSLA ’05, pages 97–116, 2005.

[14] J. Gil and I. Maman. Whiteoak: Introducing structural typing into Java. In OOPSLA, 2008.

[15] X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon. The Objective Caml system, release 3.10.
Available at http://caml.inria.fr/pub/docs/manual-ocaml, 2007.

[16] B. Magnusson. Code reuse considered harmful. Journal of Object-Oriented Programming, 4(3),
November 1991.

[17] D. Malayeri and J. Aldrich. Integrating nominal and structural subtyping. In ECOOP ’08, July 2008.

[18] Sun Microsystems. Java collections API design FAQ. Available at http://java.sun.com/j2se/1.4.2/docs/
guide/collections/designfaq.html, 2003.

[19] T. Millstein and C. Chambers. Modular statically typed multimethods. Inf. Comput., 175(1):76–118,
2002.

[20] R. Muschevici, A. Potanin, E. Tempero, and J. Noble. Multiple dispatch in practice. In OOPSLA 08,
October 2008.

18

http://caml.inria.fr/pub/docs/manual-ocaml
http://java.sun.com/j2se/1.4.2/docs/guide/collections/designfaq.html
http://java.sun.com/j2se/1.4.2/docs/guide/collections/designfaq.html

[21] D. Musser and A. Stepanov. Generic programming. In P. Gianni, editor, ISAAC ’88, volume 38 of
Lecture Notes in Computer Science, pages 13–25. Springer, 1989.

[22] F. Steimann. The infer type refactoring and its use for interface-based programming. Journal of
Object Technology, 6(2), 2007.

[23] E. D. Tempero, J. Noble, and H. Melton. How do Java programs use inheritance? An empirical study
of inheritance in Java software. In ECOOP ’08, pages 667–691, 2008.

A Subjective Criteria

In Section 3.2, we enumerated the number of cases where it could be “useful” to generalize the parameter
types of a particular method. To determine this, we asked two questions. First, does the inferred param-
eter type S generalize the abstract operation performed by the method (as determined by the method
name)? For example, generalizing the List parameters in ListUtils.intersection does appear to generalize
the abstract operation of taking the intersection of two sequences. Second, does it seem likely that there
would be multiple subtypes of S? For example, in Crystal we found that there were two methods of the
IBinding interface that were often used, and we were informed by the developers that it was conceivable
that they would replace the use of Eclipse binding objects with an application-specific representation.

In Section 5.2, we tabulated the number of methods in a common method group that had “the same
meaning.” To determine this, we used javadoc when available; when it was not, we examined the body
of the method to determine the operation being performed.

19

Program Version

Ant 1.7.0
antlr 2.7.6
Apache collections 3.2
Areca 5.5.3
Cayenne 2.0.4
Columba 1.0RC1
Crystal 3.3.0
DrJava 20080904-r4668
Emma 2.0.5312
freecol 0.7.3
hsqldb 1.8.0.4
HttpClient 3.1
jEdit 4.2
JFreeChart 1.0.0-rc1
JHotDraw 7.0.9
jruby 1.0.1
jung 1.7.6
LimeWire 4.13.0
log4j 1.2.15
Lucene 1.4
OpenFire 3.4.2
plt collections 20080904-r4668
pmd 3.3
poi 2.5.1
quartz 1.5.2
Smack 3.0.4
Struts 2.0.11
Tomcat 6.0.14
xalan 2.7.0

Table 8: Version numbers of empirical study subject programs

20

	Introduction
	Corpus and Methodology
	Inferring Structural Types for Method Parameters
	Quantitative Results
	Qualitative Results
	Translation to Whiteoak

	Uses of Java Collections Library
	Related work
	Summary of results

	Throwing ``Unsupported Operation'' Exceptions
	Common Methods
	Frequency
	Accidental Name Clashes
	Code Clones

	Cascading instanceof Tests
	Java Reflection Analysis
	Related Work
	Summary and Conclusions
	Subjective Criteria

